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Question. Write the proofthatm,, =---
Before proving the result, we will state two useful lemmas.

Lemmal. Let (m,n) e Nx Z, such that m+ n is even. We define

Pn 2 {paths from (0,0) to (m, n) with steps /' and \}

and pm,n dzefigm,d. Then pmn = (ninm).
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Proofoflemma 1. Let m,n € Z, m = 0and m+n even. For all path p € 2, ,;, each step of p makes us move 1 unit to the
right. Since p reaches m on the x-axis, p is constituted of m steps in total. Moreover, let us define a = |{ /" stepsin p}|

and = |{\ steps in p} | We observe that a + f is equal to the total number of steps in p, which is m, and a — 8 gives
the altitude of the arrival point of the path, which is n. Therefore, a, § solves a linear system (8) which is equivalent to

Ja+rp = m Ja = (m+n)/2
(S)'{ a-f = n = (8)'{ B (m—-n)/2.

This tells us that any path in £2,,, ,, has exactly (m+ n)/2 up-right steps ,” and (m—n)/2 down-right steps \\. Therefore,

there is as many paths in 22, , as ways of choosing the order of the (m+n)/2 / steps among the m steps, there is thus

(%) possible ways of building a path from (0,0) to (m, n). O
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As an immediate corrolary of lemma 1, we can now count how many paths links (0,0) to the point (2r,0): this

number is
2n 2n
P2no = |Pono| = (2n+0) = ( )
5 n

I: Lemma 2. The sets P2y, 0\ My, and P, o are in bijection.

Proofoflemma 2. Let p € P, 0\ M, : it is a path from (0,0) to (2r,0) that is not a mountain, and in particular, p
reaches a point at "altitude" -1 at least once. Let a € N be the coordinate on the x-axis of the first point at altitude -1.
The mirror operation consists of constructing the mirrored path, denoted by p, which is defined as follows: the path
is constituted of the first a steps of p, and the last 21 — a steps are "reflected" by replacing each \ step with an " step
and vice versa.

Geometrically, the mirrored path is formed by

taking the first steps until it reaches an altitude ? / \
of —1, and then applying the x = —1 symmetry 11
axis \ / \
For example, in the figure shown on the side, ; \ | \ | . | | |
the mirrored path is consitituted of the first 3 } 2\‘7 L\S/V 6 1 8 ? ’_1%
blue steps, and the last 7 red steps. -1+
The effect of this "symmetry point of view" is \ / \
that, the destination @ of the mirrored path p is 21
the symmetric of the destination @ of the orig-
inal path p around the line x = —1. Since, by =371
definition, p ends in (27,0), the mirrored path \ /
_4 +

p must end in (2n, -2).



Thus, the mirror operation m : p — p maps any non-moutain path to a path that ends in (27, —2). We have to show
that m is a bijection. Briefly, if p; and p; are two non-mountain paths that gets reflected to the same paths in %%,, _»,
then p; = p2. In other terms, the application m is injective.

Conversly, each path q € 2%, _» must cross the altitude —1 at least once. Taking b € N the coordinate on the x-axis
of the first point of q reaching altitude —1, the same mirror operation gives a reflection q that is a non-mountain path
which has (2r,0) as destination. It means that each path q € 9%, _» comes from a non-mountain path in %%, 0\ .4,.
In other terms, the application m is surjective.

Finally, the mirror operation m: p — p is a bijection %%, ¢ \ 4, = @, n—2- O

We are now ready to compute m,, the number of moutains.

Proof. Since 25,0\ 4, and %,,, _, are finite sets, that are in bijection (by lemma 2), they share the same cardinal. We
thus have:

| 21,0\ Mln| = |Pon,—2|

|Pon0| = |tln| = | Pon, 2|

—_—— M~ —
def def def
=P2n0 =My =Pan,-2

and therefore, m;, = p2,,0 — p2n,—2. Thanks to lemma 1, both this quantities can be easely computed, and we have
pano = (2") and pan,—» = (ﬁé) =(*"). Finally, we have:

ol ()

Remark. 7o go further on this subject, we can give the arguments to prove the recursive formula:

mo=1 and vneN*, My =MoMp—1+ M1 My_o+ -+ My_2My + My_1Myp.

Let us consider a mountain m € .#,. We know that the path must begin with a ,/ move; otherwise, it would
immediately reach a negative altitude. Moreover, within the sequence of moves, there must exist at least one \, move
that decreases the altitude from 1 to 0. Let us focus on \, the first move that takes the altitude from 1 to 0.

Since each move changes the altitude by either +1 or —1, the parity of the altitude coincides with the parity of the
move number. The first move — an odd-numbered one — leads to altitude 1, which is odd. The second move — of
even index — leads either to altitude 2 or 0, both even; and so forth. Therefore, if \ is the /" move, then, since it
reaches an even altitude (0), we must have that ¢ is even. Consequently, there exists some k € [n] such that \ is the
k)™ move.

Without loss of generality, our mountain can be represented as:

y

) /\4\ 2 moves
| | 2n— Zlg moves
| ! ! ! ! Vk . - ! "

1 2k-1 2

n

In the sequence of green moves, the altitude always remains above 1; otherwise, this would contradict the assump-
tion that \\, is the first move leading to altitude 0. Consequently, the green sequence defines a mountain oflength 2k—2
moves, i.e. (green moves) € #j._1, and this mountain lies at altitude +1. The same reasoning applies to the sequence
of purple moves: it defines a sequence of movements of length 2n — 2k that goes from altitude 0 back to altitude 0
without crossing the x-axis; therefore, (purple moves) € .#,,_.

Now, let us construct a mountain of total length 27 whose first \ occurs at position 2k. To do so, we must select a
mountain .#._; to be inserted between , and \, and another mountain .#,,_j to follow \. Since there are m;_; and
my,—x possible choices for these two sequences of moves, respectively, there are exactly my_; x m,,_ distinct ways to
construct a mountain whose first “\ appears at position 2k.

We now have a partition of the set of mountains as

n
My =|_| {m e 4, such that \ is in position 2k}
k=1



where the symbol "U" denotes a disjoint union. This immediately yields
My = | Mp |{m € ., such that \ is in position 2k}|

Mi—1Mp—k-

n
=2
k=1

n
=2
k=1



