Mathematics for Computer Science

TD4

October 1st, 2025

Question. Write the proof that $m_n = \cdots$

Before proving the result, we will state two useful lemmas.

Lemma 1. Let $(m, n) \in \mathbb{N} \times \mathbb{Z}$, such that m + n is even. We define

$$\mathcal{P}_{m,n} \stackrel{\text{def}}{=} \{ paths from (0,0) to (m,n) with steps / and \setminus \}$$

and
$$p_{m,n} \stackrel{\text{def}}{=} |\mathscr{P}_{m,n}|$$
. Then $p_{m,n} = \binom{m}{\frac{n+m}{2}}$.

Proof of lemma 1. Let $m, n \in \mathbb{Z}$, $m \ge 0$ and m+n even. For all path $p \in \mathscr{P}_{m,n}$, each step of p makes us move 1 unit to the right. Since p reaches m on the x-axis, p is constituted of m steps in total. Moreover, let us define $\alpha \stackrel{\text{def}}{=} |\{\nearrow \text{ steps in p}\}|$ and $\beta \stackrel{\text{def}}{=} |\{\searrow \text{ steps in p}\}|$. We observe that $\alpha + \beta$ is equal to the total number of steps in p, which is m, and $\alpha - \beta$ gives the altitude of the arrival point of the path, which is n. Therefore, α, β solves a linear system (\mathcal{S}) which is equivalent to

$$(\mathbb{S}): \left\{ \begin{array}{lcl} \alpha+\beta & = & m \\ \alpha-\beta & = & n \end{array} \right. \iff (\mathbb{S}): \left\{ \begin{array}{lcl} \alpha & = & (m+n)/2 \\ \beta & = & (m-n)/2. \end{array} \right.$$

This tells us that any path in $\mathscr{P}_{m,n}$ has exactly (m+n)/2 up-right steps \nearrow and (m-n)/2 down-right steps \searrow . Therefore, there is as many paths in $\mathscr{P}_{m,n}$ as ways of choosing the order of the (m+n)/2 \nearrow steps among the m steps, there is thus $\left(\frac{m}{n\pm m}\right)$ possible ways of building a path from (0,0) to (m,n).

As an immediate corrolary of **lemma 1**, we can now count how many paths links (0,0) to the point (2n,0): this number is

$$p_{2n,0} = \left| \mathscr{P}_{2n,0} \right| = \left(\frac{2n}{\frac{2n+0}{2}} \right) = \binom{2n}{n}.$$

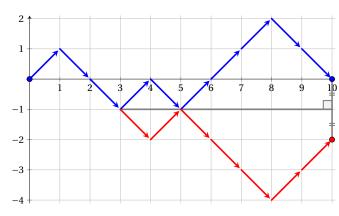
Lemma 2. The sets $\mathcal{P}_{2n,0} \setminus \mathcal{M}_n$ and $\mathcal{P}_{2n,-2}$ are in bijection.

Proof of lemma 2. Let $p \in \mathcal{P}_{2n,0} \setminus \mathcal{M}_n$: it is a path from (0,0) to (2n,0) that is not a mountain, and in particular, p reaches a point at "altitude" -1 at least once. Let $a \in \mathbb{N}$ be the coordinate on the x-axis of the *first point* at altitude -1. The *mirror* operation consists of constructing the mirrored path, denoted by \overline{p} , which is defined as follows: the path is constituted of the first a steps of p, and the last 2n - a steps are "reflected" by replacing each \setminus step with an \nearrow step and vice versa.

Geometrically, the mirrored path is formed by taking the first steps until it reaches an altitude of -1, and then applying the x = -1 symmetry axis.

For example, in the figure shown on the side, the mirrored path is consitituted of the first 3 blue steps, and the last 7 red steps.

The effect of this "symmetry point of view" is that, the destination \bullet of the mirrored path \overline{p} is the symmetric of the destination \bullet of the original path p around the line x = -1. Since, by definition, p ends in (2n,0), the mirrored path \overline{p} must end in (2n,-2).



Thus, the mirror operation $\mathbf{m} : \mathbf{p} \mapsto \overline{\mathbf{p}}$ maps any non-moutain path to a path that ends in (2n, -2). We have to show that \mathbf{m} is a bijection. Briefly, if \mathbf{p}_1 and \mathbf{p}_2 are two non-mountain paths that gets reflected to the same paths in $\mathscr{P}_{2n,-2}$, then $\mathbf{p}_1 = \mathbf{p}_2$. In other terms, the application \mathbf{m} is *injective*.

Conversly, each path $q \in \mathcal{P}_{2n,-2}$ must cross the altitude -1 at least once. Taking $b \in \mathbb{N}$ the coordinate on the x-axis of the first point of q reaching altitude -1, the same mirror operation gives a reflection \overline{q} that is a non-mountain path which has (2n,0) as destination. It means that each path $q \in \mathcal{P}_{2n,-2}$ comes from a non-mountain path in $\mathcal{P}_{2n,0} \setminus \mathcal{M}_n$. In other terms, the application \mathbf{m} is *surjective*.

Finally, the mirror operation
$$\mathbf{m}: \mathbf{p} \mapsto \overline{\mathbf{p}}$$
 is a bijection $\mathscr{P}_{2n,0} \setminus \mathscr{M}_n \xrightarrow{\simeq} \mathscr{P}_{2n,-2}$.

We are now ready to compute m_n the number of moutains.

Proof. Since $\mathcal{P}_{2n,0} \setminus \mathcal{M}_n$ and $\mathcal{P}_{2n,-2}$ are finite sets, that are in bijection (by **lemma 2**), they share the same cardinal. We thus have:

$$\begin{aligned} \left| \mathcal{P}_{2n,0} \setminus \mathcal{M}_n \right| &= \left| \mathcal{P}_{2n,-2} \right| \\ \left| \mathcal{P}_{2n,0} \right| - \left| \mathcal{M}_n \right| &= \left| \mathcal{P}_{2n,-2} \right| \\ &\stackrel{\text{def}}{=} p_{2n,0} &\stackrel{\text{def}}{=} p_{2n,-2} \end{aligned}$$

and therefore, $m_n = p_{2n,0} - p_{2n,-2}$. Thanks to **lemma 1**, both this quantities can be easely computed, and we have $p_{2n,0} = \binom{2n}{n}$ and $p_{2n,-2} = \binom{2n}{2n-2} = \binom{2n}{n-1}$. Finally, we have:

$$m_n = \binom{2n}{n} - \binom{2n}{n-1}.$$

Remark. To go further on this subject, we can give the arguments to prove the recursive formula:

$$m_0 = 1$$
 and $\forall n \in \mathbb{N}^*$, $m_n = m_0 m_{n-1} + m_1 m_{n-2} + \dots + m_{n-2} m_1 + m_{n-1} m_0$.

Let us consider a mountain $m \in \mathcal{M}_n$. We know that the path must begin with a \nearrow move; otherwise, it would immediately reach a negative altitude. Moreover, within the sequence of moves, there must exist at least one \searrow move that decreases the altitude from 1 to 0. Let us focus on \searrow , the *first move* that takes the altitude from 1 to 0.

Since each move changes the altitude by either +1 or -1, the parity of the altitude coincides with the parity of the move number. The first move — an odd-numbered one — leads to altitude 1, which is odd. The second move — of even index — leads either to altitude 2 or 0, both even; and so forth. Therefore, if \setminus is the ℓ^{th} move, then, since it reaches an even altitude (0), we must have that ℓ is even. Consequently, there exists some $k \in [n]$ such that \setminus is the $(2k)^{\text{th}}$ move.

Without loss of generality, our mountain can be represented as:

In the sequence of green moves, the altitude always remains above 1; otherwise, this would contradict the assumption that \setminus is the first move leading to altitude 0. Consequently, the green sequence defines a mountain of length 2k-2 moves, *i.e.* (green moves) $\in \mathcal{M}_{k-1}$, and this mountain lies at altitude +1. The same reasoning applies to the sequence of purple moves: it defines a sequence of movements of length 2n-2k that goes from altitude 0 back to altitude 0 without crossing the x-axis; therefore, (purple moves) $\in \mathcal{M}_{n-k}$.

Now, let us construct a mountain of total length 2n whose first \ occurs at position 2k. To do so, we must select a mountain \mathcal{M}_{k-1} to be inserted between \(/ \) and \(/ \), and another mountain \mathcal{M}_{n-k} to follow \(/ \). Since there are m_{k-1} and m_{n-k} possible choices for these two sequences of moves, respectively, there are exactly $m_{k-1} \times m_{n-k}$ distinct ways to construct a mountain whose first \(/ \) appears at position 2k.

We now have a partition of the set of mountains as

$$\mathcal{M}_n = \bigsqcup_{k=1}^n \{ \mathbf{m} \in \mathcal{M}_n \text{ such that } \setminus \text{ is in position } 2k \}$$

where the symbol " \sqcup " denotes a disjoint union. This immediately yields

$$m_n = |\mathcal{M}_n| = \sum_{k=1}^n \left| \left\{ m \in \mathcal{M}_n \text{ such that } \setminus \text{ is in position } 2k \right\} \right|$$

= $\sum_{k=1}^n m_{k-1} m_{n-k}$.