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Question. Write the proof that mn = ·· ·

Before proving the result, we will state two useful lemmas.

Lemma 1. Let (m,n) ∈N×Z, such that m +n is even. We define

Pm,n
def= {

paths from (0,0) to (m,n) with steps ↗ and ↘}
and pm,n

def= ∣∣Pm,n
∣∣. Then pm,n = ( m

n+m
2

)
.

Proof of lemma 1. Let m,n ∈Z, m ≥ 0 and m+n even. For all path p ∈Pm,n , each step of p makes us move 1 unit to the

right. Since p reaches m on the x-axis, p is constituted of m steps in total. Moreover, let us define α
def= ∣∣{↗ steps in p

}∣∣
and β

def= ∣∣{↘ steps in p
}∣∣. We observe that α+β is equal to the total number of steps in p, which is m, and α−β gives

the altitude of the arrival point of the path, which is n. Therefore, α,β solves a linear system (S) which is equivalent to

(S) :

{
α+β = m
α−β = n

⇐⇒ (S) :

{
α = (m +n)/2
β = (m −n)/2.

This tells us that any path in Pm,n has exactly (m+n)/2 up-right steps ↗ and (m−n)/2 down-right steps ↘. Therefore,
there is as many paths in Pm,n as ways of choosing the order of the (m+n)/2 ↗ steps among the m steps, there is thus( m

n+m
2

)
possible ways of building a path from (0,0) to (m,n).

As an immediate corrolary of lemma 1, we can now count how many paths links (0,0) to the point (2n,0): this
number is

p2n,0 =
∣∣P2n,0

∣∣= (
2n

2n+0
2

)
=

(
2n

n

)
.

Lemma 2. The sets P2n,0 \Mn and P2n,−2 are in bijection.

Proof of lemma 2. Let p ∈ P2n,0 \ Mn : it is a path from (0,0) to (2n,0) that is not a mountain, and in particular, p
reaches a point at "altitude" -1 at least once. Let a ∈N be the coordinate on the x-axis of the first point at altitude -1.
The mirror operation consists of constructing the mirrored path, denoted by p, which is defined as follows: the path
is constituted of the first a steps of p, and the last 2n−a steps are "reflected" by replacing each ↘ step with an ↗ step
and vice versa.
Geometrically, the mirrored path is formed by
taking the first steps until it reaches an altitude
of −1, and then applying the x = −1 symmetry
axis.
For example, in the figure shown on the side,
the mirrored path is consitituted of the first 3
blue steps, and the last 7 red steps.
The effect of this "symmetry point of view" is
that, the destination of the mirrored path p is
the symmetric of the destination of the orig-
inal path p around the line x = −1. Since, by
definition, p ends in (2n,0), the mirrored path
p must end in (2n,−2).
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Thus, the mirror operation m : p 7→ p maps any non-moutain path to a path that ends in (2n,−2). We have to show
that m is a bijection. Briefly, if p1 and p2 are two non-mountain paths that gets reflected to the same paths in P2n,−2,
then p1 = p2. In other terms, the application m is injective.

Conversly, each path q ∈P2n,−2 must cross the altitude −1 at least once. Taking b ∈N the coordinate on the x-axis
of the first point of q reaching altitude −1, the same mirror operation gives a reflection q that is a non-mountain path
which has (2n,0) as destination. It means that each path q ∈P2n,−2 comes from a non-mountain path in P2n,0 \Mn .
In other terms, the application m is surjective.

Finally, the mirror operation m : p 7→ p is a bijection P2n,0 \Mn
≃−→P2n,−2.

We are now ready to compute mn the number of moutains.

Proof. Since P2n,0 \Mn and P2n,−2 are finite sets, that are in bijection (by lemma 2), they share the same cardinal. We
thus have: ∣∣P2n,0 \Mn

∣∣= ∣∣P2n,−2
∣∣∣∣P2n,0

∣∣︸ ︷︷ ︸
def=p2n,0

−|Mn |︸ ︷︷ ︸
def=mn

= ∣∣P2n,−2
∣∣︸ ︷︷ ︸

def=p2n,−2

and therefore, mn = p2n,0 − p2n,−2. Thanks to lemma 1, both this quantities can be easely computed, and we have
p2n,0 =

(2n
n

)
and p2n,−2 =

( 2n
2n−2

2

)= ( 2n
n−1

)
. Finally, we have:

mn =
(

2n

n

)
−

(
2n

n −1

)
.

Remark. To go further on this subject, we can give the arguments to prove the recursive formula:

m0 = 1 and ∀n ∈N∗, mn = m0mn−1 +m1mn−2 +·· ·+mn−2m1 +mn−1m0.

Let us consider a mountain m ∈ Mn . We know that the path must begin with a ↗ move; otherwise, it would
immediately reach a negative altitude. Moreover, within the sequence of moves, there must exist at least one ↘ move
that decreases the altitude from 1 to 0. Let us focus on ↘, the first move that takes the altitude from 1 to 0.

Since each move changes the altitude by either +1 or −1, the parity of the altitude coincides with the parity of the
move number. The first move — an odd-numbered one — leads to altitude 1, which is odd. The second move — of
even index — leads either to altitude 2 or 0, both even; and so forth. Therefore, if ↘ is the ℓth move, then, since it
reaches an even altitude (0), we must have that ℓ is even. Consequently, there exists some k ∈ JnK such that ↘ is the
(2k)th move.

Without loss of generality, our mountain can be represented as:

1 2k −1 2k 2n

1

· · ·
· · ·

2k −2 moves

2n −2k moves

In the sequence of green moves, the altitude always remains above 1; otherwise, this would contradict the assump-
tion that↘ is the first move leading to altitude 0. Consequently, the green sequence defines a mountain of length 2k−2
moves, i.e.

(
green moves

) ∈Mk−1, and this mountain lies at altitude +1. The same reasoning applies to the sequence
of purple moves: it defines a sequence of movements of length 2n − 2k that goes from altitude 0 back to altitude 0
without crossing the x-axis; therefore,

(
purple moves

) ∈Mn−k .
Now, let us construct a mountain of total length 2n whose first ↘ occurs at position 2k. To do so, we must select a

mountain Mk−1 to be inserted between ↗ and ↘, and another mountain Mn−k to follow ↘. Since there are mk−1 and
mn−k possible choices for these two sequences of moves, respectively, there are exactly mk−1 ×mn−k distinct ways to
construct a mountain whose first ↘ appears at position 2k.

We now have a partition of the set of mountains as

Mn =
n⊔

k=1

{
m ∈Mn such that ↘ is in position 2k

}
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where the symbol "⊔" denotes a disjoint union. This immediately yields

mn = |Mn | =
n∑

k=1

∣∣{m ∈Mn such that ↘ is in position 2k
}∣∣

=
n∑

k=1
mk−1mn−k .
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